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INTRODUCTION:

A major goal in genetics today is to predict and catalog whether specific single nucleotide
variants (SNPs) in the genome are pathogenic or harmless. This is useful because it will
allow doctors to immediately know if a patient is likely to get a disease, just by looking at
the patient’s genome sequence.

Cystic Fibrosis (CF) is one disease that these prediction methods are particularly important
for, due to the severity of the phenotype and the high frequency of the disease. About 1 in
2,500 Europeans are diagnosed with Cystic Fibrosis and about 1 in 25 are carriers for the
disease (Ratjen & Doring 2003). The disease is characterized by the production of thick,
sticky mucus due to abnormal sodium and chloride transport across cells. It is known that
Cystic Fibrosis is caused by mutations in the CFTR (Cystic Fibrosis Transmembrane
Conductance Regulator) gene, which regulates this sodium and chloride transport. One
particular mutation in the CFTR gene, delta508, is the disease cause in greater than 90% of
patients (Bobadilla et al. 2002). However, it is known that other mutations in this gene also
cause Cystic Fibrosis.

A variety of SNP classifiers currently exist, but they generally have precision and recall
values around 0.8. To use these classifiers in a clinical environment, it is essential that these
values are much higher. Current classifiers utilize a variety of methods for their predictions,
and the goal of this project is to draw on their different strengths to develop an improved
classifier to distinguish between pathogenic and neutral alleles in the CFTR gene. In the
future, [ hope to apply this method to other genes and diseases.

METHODS

DATA SET + PREPROCESSING

The truth data set used for this project is the results of a Nature Genetics paper by Sosnay et
al. (2012). In this paper, the authors analyzed all SNPs in the CFTR gene with an allele
frequency of at least 0.01% in ~40,000 Cystic Fibrosis patients. The authors conducted
extensive clinical and functional analyses to determine whether or not each SNP was CF
causing. My tests are based on 58 missense mutations. 47 of the mutations are CF causing
and 11 are neutral. Missense mutations are point mutations where a single change results
in a different amino acid in a protein. As different amino acids have different
characteristics, the mutated amino acid may cause the whole protein to be nonfunctional.
My goal is to make a classifier that is highly accurate, but relies only on computational
features (i.e. does not require data from clinical or functional tests).

[ am looking at various non-clinical features: allele frequency in CF patients, allele frequency
in the general European population, PolyPhen-2 (Adzhubei et al. 2010), SIFT (Ng et al.
2001), PROVEAN (Choi et al. 2010), PON-P2 (PON-P2 2013), POSE (Masica et al. 2012) and
PANTHER (Thomas et al. 2003). These last six features are all mutation classifiers



themselves, which estimate how much impact a mutation will have on protein structure. It
was my goal to draw on the power of multiple previous classifiers (known to have different
strengths) to create an overall better classifier. These previous classifiers are based on
various characteristics. For example, PANTHER estimates the evolutionary conservation of
that amino acid in various species. It is thought that genome regions that are more
conserved between different species are more important to protein function than those that
are less conserved. PolyPhen-2 estimates the effect that the mutation will have based on
protein structure. It considers features such as the differences in polarity and molecular
weight of the two amino acids. The European allele frequencies come from 758 sequenced
European chromosomes available through my thesis lab and the frequencies of the
mutation in CF patients come from the primary CFTR database (www.cftr2.org). Itis
thought that CF causing SNPs may be at a lower frequency than neutral SNPs, as natural
selection selects against the negative CF causing SNPs. (Note that it is possible that the
European allele frequency data includes Cystic Fibrosis patients, but if so, likely at the level
of the general population.)

As there are a very limited number of training samples, leave-out-one cross validation was
utilized for the test error. There was also missing data in 0.0172 of the PANTHER results
and 0.156 of the POSE results. These missing values were filled in with the median of the
rest of the values.

MACHINE LEARNING

Testing performance of individual features

First, | measured the success of all previous classifiers that I am using as features (Table 1).
Interestingly, these classifiers perform better on this data than they do in standard genome
data (Adzhubei et al. 2010). They usually have precision and recall values in the range of
0.75-0.85. In the future, when more data is available, it will be interesting to see the results.
Since these classifiers were already quite good, it was a bit difficult to improve upon them.

Initial feature selection & logistic regression

The Mann-Whitney test was used to initially determine significant features. I used this, as
opposed to a t-test, because the features were generally not normally distributed. I found
that all features, besides allele frequency in CF patients, were significantly different
between the neutral and pathogenic mutations. I then normalized the data of the remaining
seven features to a mean of 0 and a variance of 1.

The first machine learning algorithm tested was logistic regression (as implemented in R’s
glm package) with my seven normalized features. I utilized an ROC curve to determine the
threshold value of 0.2. This resulted in no training error, but a LOOCV error of 0.086 (Table
2). It also outperforms all of the individual feature classifiers. However, this result does
have high variance and is over fitting the data.

Secondary feature selection & logistic regression

In attempt to reduce this error, [ conducted more advance feature selection methods. 1
utilized both forward and backward search to find the subset of model features that
minimizes the Akaike’s Information Criterion (AIC) of the model. (as implemented in R’s
step function). This method resulted in five features: allele frequency in European
population, Polyphen-2, PANTHER, SIFT and PON-P2.



I reran logistic regression with these five features. Interestingly, the resulting model
performed slightly worse and had slightly higher variance than the initial seven feature
model. I also noted that the precision was lower that the recall, indicating that logistic
regression incorrectly classified more neutral mutations than pathogenic mutations. I
hypothesized this may be because most of the training examples are pathogenic mutations.

Weighted, Regularized Logistic Regression

To investigate this problem and attempt to lower the variance, I tried out L1 and L2
regularized logistic regression with weighting. The samples were weighted by the
proportion of type in the data set (1/47 for pathogenic, 1/11 for neutral). The cost
parameter was determined empirically to minimize the LOOCV error. I found that L1
regularization resulted in a lower LOOCV error than L2 regularization. Thus, the best
performing settings for this method was L1 regularization with a cost of 1,000. This method
resulted in a model with slightly decreased variance. However, this decrease is due to a
slightly increased training error and an equivalent LOOCV error.

Other classifiers tested

Support vector machines (as implemented in R’s LiblineaR package) and random forests (as
implemented in R’s randomForest package) were also explored. For support vector
machines, I utilized the same weighting as previously. The cost parameter was chosen
empirically to minimize the LOOCV error. L1 and L2 regularization were also examined to
minimize LOOCV error. The SVM model that minimized the LOOCV error had a cost of 100.
L1 and L2 regularization performed equivalently with this cost value. Unfortunately, the
best support vector machine model had a higher training and LOOCV error than the initial
logistic regression. However, the precision and recall values in this svm model are equal to
each other, indicating that the model is not incorrectly classifying one class more than the
other.

The last classifier tested was random forests. I hypothesize that this was a promising
algorithm as it is an ensemble method and is it immune to colinearity. As most of my
features are classifiers, they are correlated. Unfortunately, random forests performed
worse that the other algorithms. I used the default value of 500 trees. I also weighted the
classes, similar to previous algorithms. I noticed that, despite the weights, all of the neutral
mutations (in the LOOCV) were misclassified. In attempt to improve upon this, [ empirically
tested increasing the weight of the neutral class. Despite drastic increases in the neutral
class’s weight, random forests continued to incorrectly classify all of the neutral mutations
in the LOOCV.

Classifier Precision Recall F-measure | % unclassified
PolyPhen.2 0.88 0.98 0.93 0.05

PROVEAN 0.95 0.79 0.86 0

SIFT 0.90 0.96 0.93 0

PANTHER 0.81 0.91 0.86 0

PON-P2 0.95 1 0.97 0.31

POSE (Data notavail) | “ “ “

Table 1: This table shows the results of current classifiers (used as features in this project)
on the CFTR truth dataset. % unclassified is the percent of the mutations that the classifier
returned a value of “unknown”.



Data Method Training | LOOCV | Precision | Recall | F-
Error error measure
7 features Logistic 0 0.086 0.938 0.957 | 0.947
chosen by Regression
Mann-Whitney
test
5 features Logistic 0 0.103 0.918 0.957 | 0.937
chosen in Regression
for./back.
search
7 features Logistic 0.0172 0.086 0.975 0.938 | 0.947
Regression,
Weighted, C=
1,000,
L1 reg.
7 features SVM, C=100, 0.0172 0.103 0.938 0.938 | 0.938
Weighted, L1
or L2 reg.
7 features Random Forest, | 0.069 0.190 0.810 1 0.895
Weighted

Table 2: Results from various machine learning classifiers and data subsets.

FUTURE

From this project, I learned that complex methods are not necessarily better methods. No
method I tried outperformed my Wilcoxin rank-sum feature selection and standard logistic
regression. With these simple techniques, I achieved increased accuracy compared to the
current state-of-the-art mutation classifiers. By drawing on the different strengths of
current classifiers [ was able to create a classifier that was better all around.

One major caveat to these results is the small number of training examples. Since each
mutation has to be validated with extensive clinical and functional assays, it is difficult to
get large numbers. There are a few other CFTR mutation databases available, but these are
not extensively validated. In the future, I could test my model on this data (with the caveat
that some of the truth set might be wrong). I am also in the process of acquiring data for
more neutral mutations, though not in time for this project. Furthermore, it would be
interesting to look into databases of other mutations. As current classifiers perform better
than usual on this dataset, it may be useful to look into datasets that have more room for
improvement.

(Almost all of the work and thought about this project was conducted by me. The only help
I received was a brief chat with Suyash Shringarpure, a post doc in my advisor’s lab (Carlos
Bustamante in Genetics).
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